

DATA SHEET

SURFACE MOUNT MULTILAYER CERAMIC CAPACITORS

High Frequency Automotive Grade

NP0 16 V TO 50 V

0.1 pF to 100 pF RoHS compliant & Halogen Free

YAGEO

Product Specification – February 8, 2021 V.1

Surface-Mount Ceramic Multilayer Capacitors

High Frequency Automotive grade

16 V to 50 V

SCOPE

This specification describes Automotive grade NPO series chip capacitors with lead-free terminations and used for automotive equipments.

<u>APPLICATIONS</u>

All general purpose applications Entertainment applications Comfort / security applications Information applications

FEATURES

- AEC-Q200 qualified
- MSL class: MSL I
- AQ series soldering is compliant with J-STD-020D
- Halogen free epoxy
- RoHS compliant
- Reduce environmentally hazardous waste
- High component and equipment reliability
- The capacitors are 100% performed by automatic optical inspection prior to taping.

ORDERING INFORMATION - GLOBAL PART NUMBER

All part numbers are identified by the series, size, tolerance, TC material, packing style, voltage, process code, termination and capacitance value.

GLOBAL PART NUMBER

AQ xxxx x x xxx x x xxx(2) (3) (4) (5) (6) (7)

(I) SIZE - INCH BASED (METRIC)

0603 (1608)

(2) TOLERANCE

0.1pF

 $B = \pm 0.1 pF$

0.2pF to 2.0pF

 $A = \pm 0.05 pF$

 $B = \pm 0.1 pF$

 $C = \pm 0.25 pF$

2.1 pF to 5.0 pF

 $A = \pm 0.05 pF$

 $B = \pm 0.1 pF$

 $C = \pm 0.25 \text{ pF}$

 $D = \pm 0.5 pF$

5.1 pF to 9.9 pF

 $B = \pm 0.1 pF$

 $C = \pm 0.25 pF$

 $D = \pm 0.5 pF$

10pF and over

 $F = \pm 1\%$

 $G = \pm 2\%$

 $| = \pm 5\%$

(3) PACKING STYLE

R = Paper/PE taping reel; Reel 7 inch

P = Paper/PE taping reel; Reel 13 inch

(4) TC MATERIAL

NPO

(5) RATED VOLTAGE

7 = 16 V

8 = 25 V

9 = 50 V

(6) PROCESS

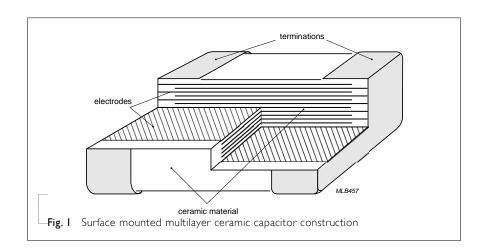
N = NP0

(7) CAPACITANCE VALUE

2 significant digits+number of zeros

The 3rd digit signifies the multiplying factor, and letter R is decimal point

Example: $121 = 12 \times 10^{1} = 120 \text{ pF}$

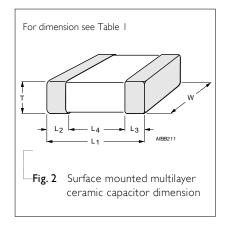

NP0

CONSTRUCTION

YAGEO

The capacitor consists of a rectangular block of ceramic dielectric in which a number of interleaved metal electrodes are contained. This structure gives rise to a high capacitance per unit volume.

The inner electrodes are connected to the two end terminations and finally covered with a layer of plated tin (Matte Sn). The terminations are leadfree. A cross section of the structure is shown in Fig.I.



DIMENSION

Table I For outlines see fig. 2

TYPE	L _I (mm)	W (mm)	T (MM)	L ₂ / min.	L ₃ (mm) max.	L ₄ (mm) min.
0402	1.0 ±0.05	0.5 ±0.05	0.5 ±0.05	0.15	0.35	0.40
0603	1.6 ±0.10	0.8 ±0.10	0.8 ±0.10	0.20	0.60	0.40

OUTLINES

Surface-Mount Ceramic Multilayer Capacitors High Frequency Automotive grade

16 V to 50 V

NP0

CAPACITANCE RANGE & THICKNESS FOR NPO

Table 2 Sizes 0402 to 0603

1	0402	0603		0402	0603
CAP.	50V	50 V	CAP.	50 V	50 V
0.1 pF	0.5±0.05	30 1	2.6 pF	0.5±0.05	0.8±0.1
0.1 pr	0.5±0.05	0.8±0.1	2.7 pF	0.5±0.05	0.8±0.1
0.2 pr	0.5±0.05	0.8±0.1	2.8 pF	0.5±0.05	0.8±0.1
0.5 pr	0.5±0.05	0.8±0.1	2.9 pF	0.5±0.05	0.8±0.1
0.1 pr 0.5 pF	0.5±0.05	0.8±0.1	3.0 pF	0.5±0.05	0.8±0.1
0.5 pr	0.5±0.05	0.8±0.1	3.1 pF	0.5±0.05	0.8±0.1
0.0 pr	0.5±0.05	0.8±0.1	3.1 pr	0.5±0.05	0.8±0.1
0.7 pi 0.8 pF	0.5±0.05	0.8±0.1	3.2 pi	0.5±0.05	0.8±0.1
0.6 pr 0.9 pF	0.5±0.05	0.8±0.1	3.4 pF	0.5±0.05	0.8±0.1
1.0 pF	0.5±0.05	0.8±0.1	3.5 pF	0.5±0.05	0.8±0.1
1.1 pF	0.5±0.05	0.8±0.1	3.6 pF	0.5±0.05	0.8±0.1
1.2 pF	0.5±0.05	0.8±0.1	3.7 pF	0.5±0.05	0.8±0.1
1.3 pF	0.5±0.05	0.8±0.1	3.8 pF	0.5±0.05	0.8±0.1
1.4 pF	0.5±0.05	0.8±0.1	3.9 pF	0.5±0.05	0.8±0.1
1.5 pF	0.5±0.05	0.8±0.1	4.0 pF	0.5±0.05	0.8±0.1
1.6 pF	0.5±0.05	0.8±0.1	4.1 pF	0.5±0.05	0.8±0.1
1.7 pF	0.5±0.05	0.8±0.1	4.2 pF	0.5±0.05	0.8±0.1
1.8 pF	0.5±0.05	0.8±0.1	4.3 pF	0.5±0.05	0.8±0.1
1.9 pF	0.5±0.05	0.8±0.1	4.4 pF	0.5±0.05	0.8±0.1
2.0 pF	0.5±0.05	0.8±0.1	4.5 pF	0.5±0.05	0.8±0.1
2.1 pF	0.5±0.05	0.8±0.1	4.6 pF	0.5±0.05	0.8±0.1
2.2 pF	0.5±0.05	0.8±0.1	4.7 pF	0.5±0.05	0.8±0.1
2.3 pF	0.5±0.05	0.8±0.1	4.8 pF	0.5±0.05	0.8±0.1
2.4 pF	0.5±0.05	0.8±0.1	4.9 pF	0.5±0.05	0.8±0.1
2.5 pF	0.5±0.05	0.8±0.1	5.0 pF	0.5±0.05	0.8±0.1

NOTE

- 1. Values in shaded cells indicate thickness class in mm
- 2. Capacitance value of non E-I2 series is on request

Surface-Mount Ceramic Multilayer Capacitors High Frequency Automotive

NP0 16 V to 50 V

CAPACITANCE RANGE & THICKNESS FOR NPO

Table 3 Sizes 0402 to 0603

CAP.	CAP. 0402 0603		CAP.	0402	0603
	50V	50 V		50 V	50 V
5.1 pF	0.5±0.05	0.8±0.1	8.2 pF	0.5±0.05	0.8±0.1
5.2 pF	0.5±0.05	0.8±0.1	8.3 pF	0.5±0.05	0.8±0.1
5.3 pF	0.5±0.05	0.8±0.1	8.4 pF	0.5±0.05	0.8±0.1
5.4 pF	0.5±0.05	0.8±0.1	8.5 pF	0.5±0.05	0.8±0.1
5.5 pF	0.5±0.05	0.8±0.1	8.6 pF	0.5±0.05	0.8±0.1
5.6 pF	0.5±0.05	0.8±0.1	8.7 pF	0.5±0.05	0.8±0.1
5.7 pF	0.5±0.05	0.8±0.1	8.8 pF	0.5±0.05	0.8±0.1
5.8 pF	0.5±0.05	0.8±0.1	8.9 pF	0.5±0.05	0.8±0.1
5.9 pF	0.5±0.05	0.8±0.1	9.0 pF	0.5±0.05	0.8±0.1
6.0 pF	0.5±0.05	0.8±0.1	9.1 pF	0.5±0.05	0.8±0.1
6.1 pF	0.5±0.05	0.8±0.1	9.2 pF	0.5±0.05	0.8±0.1
6.2 pF	0.5±0.05	0.8±0.1	9.3 pF	0.5±0.05	0.8±0.1
6.3 pF	0.5±0.05	0.8±0.1	9.4 pF	0.5±0.05	0.8±0.1
6.4 pF	0.5±0.05	0.8±0.1	9.5 pF	0.5±0.05	0.8±0.1
6.5 pF	0.5±0.05	0.8±0.1	9.6 pF	0.5±0.05	0.8±0.1
6.6 pF	0.5±0.05	0.8±0.1	9.7 pF	0.5±0.05	0.8±0.1
6.7 pF	0.5±0.05	0.8±0.1	9.8 pF	0.5±0.05	0.8±0.1
6.8 pF	0.5±0.05	0.8±0.1	9.9 pF	0.5±0.05	0.8±0.1
6.9 pF	0.5±0.05	0.8±0.1	10 pF	0.5±0.05	0.8±0.1
7.0 pF	0.5±0.05	0.8±0.1	12 pF	0.5±0.05	0.8±0.1
7.1 pF	0.5±0.05	0.8±0.1	15 pF	0.5±0.05	0.8±0.1
7.2 pF	0.5±0.05	0.8±0.1	18 pF	0.5±0.05	0.8±0.1
7.3 pF	0.5±0.05	0.8±0.1	22 pF	0.5±0.05	0.8±0.1
7.4 pF	0.5±0.05	0.8±0.1	27 pF	0.5±0.05	0.8±0.1
7.5 pF	0.5±0.05	0.8±0.1	33 pF	0.5±0.05	0.8±0.1
7.6 pF	0.5±0.05	0.8±0.1	39 pF	0.5±0.05	0.8±0.1
7.7 pF	0.5±0.05	0.8±0.1	47 pF	0.5±0.05	0.8±0.1
7.8 pF	0.5±0.05	0.8±0.1	56 pF	0.5±0.05	0.8±0.1
7.9 pF	0.5±0.05	0.8±0.1	68 pF	0.5±0.05	0.8±0.1
8.0 pF	0.5±0.05	0.8±0.1	82 pF	0.5±0.05	0.8±0.1
8.1 pF	0.5±0.05	0.8±0.1	100 pF	0.5±0.05	0.8±0.1

NOTE

- 1. Values in shaded cells indicate thickness class in mm
- 2. Capacitance value of non E-12 series is on request

High Frequency Automotive grade

NP0 16 V to 50 V

6 15

THICKNESS CLASSES AND PACKING QUANTITY

Table 4

SIZE	THICKNESS	TAPE WIDTH -	Ø180	MM / 7 INCH	Ø330	MM / 13 INCH
CODE	CLASSIFICATION	QUANTITY PER REEL	Paper	Blister	Paper	Blister
0402	0.5 ±0.05 mm	8 mm	10,000		50,000	
0603	0.8 ±0.1 mm	8 mm	4,000		15,000	

ELECTRICAL CHARACTERISTICS

NP0 DIELECTRIC CAPACITORS; NI/SIN TERMINATIONS

Unless otherwise specified, all test and measurements shall be made under standard atmospheric conditions for testing as given in 5.3 of IEC 60068-1:

Temperature: 15 °C to 35 °C
Relative humidity: 25% to 75%
Air pressure: 86 kPa to 106 kPa

Before the measurements are made, the capacitor shall be stored at the measuring temperature for a time sufficient to allow the entire capacitor to reach this temperature.

The period as prescribed for recovery at the end of a test is normally sufficient for this purpose.

 T	ah	١l	_	5
	aL	,,,	C	•

DESCRIPTION				
Capacita	ance range	0.1 pF to 100 pF		
Capacita	ance tolerance			
NP0	C < 10 pF	±0.05 pF, ±0.1 pF, ±0.25 pF, ±0.5 pF		
	C ≥ 10 pF	±1%, ±2%, ±5%		
Dissipat	tion factor (D.F.)			
NP0	C < 30 pF	≤ I / (400 + 20C)		
	C ≥ 30 pF	≤ 0.1 %		
Insulatio	on resistance after 1 minute at U _r (DC)	IR≥ I0 GΩ		
	um capacitance change as a function of temperature rature characteristic/coefficient):			
NP0		±30 ppm/°C		
Operati	ing temperature range:			
NP0		-55 °C to +125 °C		

Surface-Mount Ceramic Multilayer Capacitors

16 V to 50 V

NP0

SOLDERING RECOMMENDATION

Table 6					
SOLDERING	SIZE				
METHOD	0402	0603	0805	1206	≥ 1210
Reflow	≥ 0.1 µF	≥ 1.0 µF	≥ 2,2 µF	≥ 4.7 µF	Reflow only
Reflow/Wave	< 0.1 µF	< 1.0 µF	< 2.2 µF	< 4.7 µF	

SOLDERING CONDITIONS

The lead free MLCCs are able to stand the reflow soldering conditions as below:

- Temperature: above 220 °C
- Endurance: 95 to 120 seconds
- Cycles: 3 times

TESTS AND REQUIREMENTS

The test of "soldering heat resistance" is carried out in accordance with the schedule of "MIL-STD-202G-method 210F", "The robust construction of chip capacitors allows them to be completely immersed in a solder bath of 260 °C for 10 seconds". Therefore, it is possible to mount MLCCs on one side of a PCB and other discrete components on the reverse (mixed PCBs). Surface Mount Capacitors are tested for solderability at 245 °C during 2 seconds. The test condition for no leaching is 260°C for 30 seconds.

Table 7 Test procedures and requirements

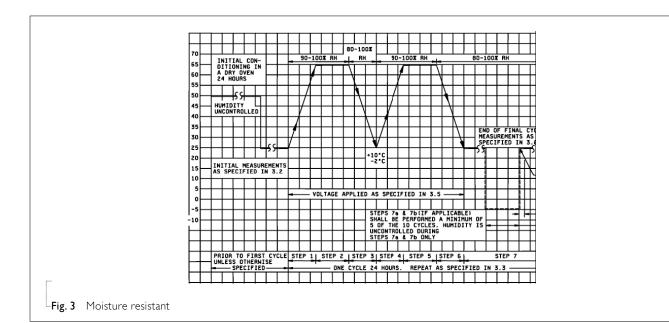
TEST Mounting	TEST METHOD		PROCEDURE	REQUIREMENTS	
	IEC 60384- 21/22	4.3	The capacitors may be mounted on printed-circuit boards or ceramic substrates	No visible damage	
Capacitance	IEC 60384- 21/22	4.5.1	Class I: At 20 °C, 24 hours after annealing $f = I$ MHz for $C \le I$ nF, measuring at voltage I V _{rms} at 20 °C $f = I$ KHz for $C > I$ nF, measuring at voltage I V _{rms} at 20 °C	Within specified tolerance	
Dissipation Factor (D.F.)	IEC 60384- 21/22	4.5.2	Class I: At 20 °C, 24 hours after annealing $f = I$ MHz for $C \le InF$, measuring at voltage $I \lor V_{rms}$ at 20 °C $f = I$ KHz for $C > InF$, measuring at voltage $I \lor V_{rms}$ at 20 °C	In accordance with specification	
Insulation Resistance	IEC 60384- 21/22	4.5.3	At U _r (DC) for I minute	In accordance with specification	

YAGEO

Surface-Mount Ceramic Multilayer Capacitors High Frequency Automotive grade

NP0

16 V to 50 V


TEST	TEST METH	IOD	PROCEDURE	REQUIREMENTS
Temperature coefficient		4.6	Capacitance shall be measured by the steps shown in the following table. The capacitance change should be measured after 5 min at each specified temperature stage.	<general purpose="" series=""> Class I: Δ C/C: ±30ppm</general>
			Step Temperature(°C)	
			a 25±2	
			b Lower temperature±3°C	
			c 25±2	
			d Upper Temperature±2°C	
			e 25±2	
			(I) Class I	
			Temperature Coefficient shall be calculated from the formula as below	
			Temp, Coefficient = $\frac{C2 - CI}{CI \times \Delta T} \times I0^6$ [ppm/°C]	
			C1: Capacitance at step c	
			C2: Capacitance at 125°C	
			ΔT : 100° C (=125° C -25° C)	
			(2) Class II	
			Capacitance Change shall be calculated from the	
			formula as below	
			$\Delta C = \frac{C2 - C1}{C1} \times 100\%$	
			C1: Capacitance at step c C2: Capacitance at step b or d	
High	AEC-Q200	3	Unpowered ; 1000hours @ T=150°C	No visual damage
Temperature Exposure			Measurement at 24±2 hours after test conclusion.	Δ C/C :
				Class I:
				NP0: within ±0.5% or 0.5 pF whichever is greater
Temperature Cycling	AEC-Q200	4	Preconditioning; 150 +0/–10 °C for 1 hour, then keep for	No visual damage
			24 ±1 hours at room temperature	ΔC/C
			الانتخار والمراجع والم والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراج	Class I:
			1000 cycles with following detail: 30 minutes at lower category temperature	NP0: Within $\pm 1\%$ or 0.5pF,
			30 minutes at lower category temperature 30 minutes at upper category temperature	whichever is greater.
			Recovery time 24 ±2 hours	D.F. meet initial specified value IR meet initial specified value
Destructive Physical Analysis	AEC-Q200	5	Note: Only applies to SMD ceramics. Electrical test not required.	

High Frequency Automotive grade

16 V to 50 V

NP0

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS	
Moisture Resistance	AEC-Q200 6	T=24 hrs/per cycle; 10 continuous cycles unpowered. Measurement at 24 ±2 hours after test condition.	No visual damage	
			Δ C/C NP0: Within ±3% or 3 pF, whichever is greater	
			D.F. Within initial specified value IR NP0: \geq 10,000 M Ω	

Biased Humidity AEC-Q200

I. Preconditioning, class 2 only: 150 +0/-10 °C /I hour, then keep for 24 ±1 hour at room temp

2. Initial measure:

Parameter: IR

Measuring voltage: I.5V \pm 0.1 VDC Note: Series with 100 K Ω

3. Test condition:

85 °C, 85% R.H. connected with 100 K Ω resistor, applied 1.5V/U $_{r}$ for 1,000 hours.

4. Recovery:

Class I: 6 to 24 hours Class 2: 24 ±2 hours

5. Final measure: IR

No visual damage after recovery

Initial requirement:

Class I:

- Connected to 100 K Ω : $C \leq 10 \text{ nF: } I.R \geq 10,000 \text{ M}\Omega \text{ or }$

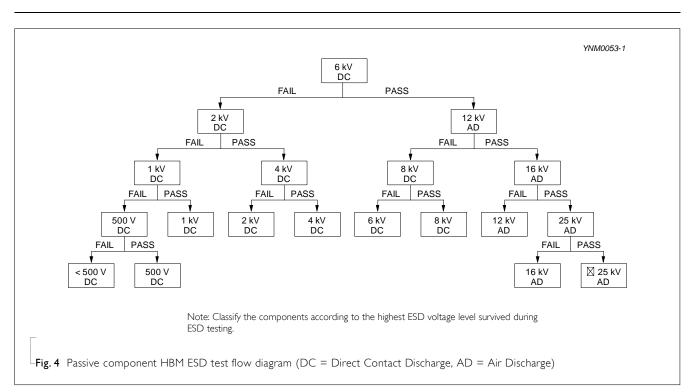
C > 10 nF: (I.R-100 K Ω) x C ≥ 100s.

Final measurement:

The insulation resistance shall be greater than 0.1 time initial value.

Surface-Mount Ceramic Multilayer Capacitors High Frequency Automotive grade

NP0 16 V to 50 V


TEST Operational Life	TEST METHOD		PROCEDURE	REQUIREMENTS		
	AEC-Q200	8	I. Initial measure: Spec: refer to initial spec C, D, IR Endurance test: Specified stress voltage applied for 1,000 hours: Applied 2.0 × U _r for general products	No visual damage $\Delta \text{C/C} \\ \text{NP0: Within } \pm 2\% \text{ or I pF, whichever} \\ \text{is greater}$		
			3. Recovery time: 24 ±2 hours4. Final measure: C, D, IR	D.F. NP0: $\leq 2 \times \text{specified value}$.		
			Note: If the capacitance value is less than the minimum value permitted, then after the other measurements have been made the capacitor shall be preconditioned according to "IEC 60384 4.1" and then the requirement shall be met.	IR $ NP0: \geq 4,000 \ M\Omega \ or \ IR \times C_r \geq 40s $ whichever is less		
External Visual	AEC-Q200	9	Any applicable method using × 10 magnification	In accordance with specification		
Physical Dimension	AEC-Q200	10	Verify physical dimensions to the applicable device specification.	In accordance with specification		
Mechanical Shock	AEC-Q200	13	Three shocks in each direction shall be applied along the three mutually perpendicular axes of the test specimen (18 shocks) Peak value: 1,500 g's Duration: 0.5 ms	$\Delta C/C$ NP0: Within ±0.5% or 0.5 pF, whichever is greater		
			Velocity change: 15.4 ft/s Waveform: Half-sin	D.F. Within initial specified value IR Within initial specified value		
Vibration	AEC-Q200	14	5 g's for 20 minutes, 12 cycles each of 3 orientations. Note: Use 8" × 5" PCB, 0.31" thick 7 secure points on one long side and 2 secure points at corners of opposite sides. Parts mounted within 2" from any secure point.	Δ C/C NP0: Within ±0.5% or 0.5 pF, whichever is greater		
			Test from 10-2000 Hz.	D.F: meet initial specified value IR meet initial specified value		
Resistance to Soldering Heat	AEC-Q200	15	Precondition: $150 \pm 0/-10$ °C for I hour, then keep for 24 ±1 hours at room temperature Preheating: for size ≤ 1206 : 120 °C to 150 °C for I	Dissolution of the end face plating shall not exceed 25% of the length of the edge concerned		
		minute Preheating: for size > 1206: 100 °C to 120 °C for I minute and 170 °C to 200 °C for I minute Solder bath temperature: 260 ±5 °C Dipping time: 10 ±0.5 seconds Recovery time: 24 ±2 hours	minute Preheating: for size > 1206: 100 °C to 120 °C for I minute and 170 °C to 200 °C for I minute Solder bath temperature: 260 ±5 °C	$\Delta C/C$ Class I: NP0: Within \pm 1% or 0.5 pF, whichever is greater.		
			D.F. within initial specified value IR within initial specified value			

Surface-Mount Ceramic Multilayer Capacitors High Frequency Automotive grade

16 V to 50 V NP0

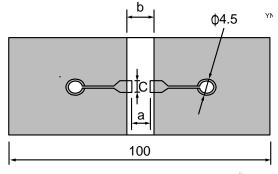
TEST Thermal Shock	TEST METHOD		PROCEDURE	REQUIREMENTS
	AEC-Q200	16	1. Preconditioning, class 2 only: $150 + 0/-10 °C /I$ hour, then keep for 24 ± 1 hour at .	No visual damage
			room temp	ΔC/C
			2. Initial measure:	NP0: Within ±1% or 1 pF, whichever
			Spec: refer to initial spec C, D, IR	is greater
			3. Rapid change of temperature test:	
	NP0: -55 °C to +125 °C; 300 cycles	NP0: -55 °C to +125 °C; 300 cycles	D.F: meet initial specified value	
			15 minutes at lower category temperature; 15 minutes at upper category temperature.	IR meet initial specified value
			4. Recovery time:	
			Class I: 6 to 24 hours	
			Class2: 24 ±2 hours	
			5. Final measure: C, D, IR	
ESD	AEC-Q200	17	Per AEC-Q200-002	A component passes a voltage level if all components stressed at that voltage level pass.

YAGEO

TEST

Surface-Mount Ceramic Multilayer Capacitors

PROCEDURE


TEST METHOD

High Frequency Automotive grade

NP0 16 V to 50 V

REQUIREMENTS

Solderability AEC-Q200 18 Preheated to a temperature of 80 °C to 140 °C and The solder should cover over 95% of maintained for 30 seconds to 60 seconds. the critical area of each termination. Test conditions for lead containing solder alloy Temperature: 235 ±5 °C Dipping time: 2 ±0.2 seconds Depth of immersion: 10 mm Alloy Composition: 60/40 Sn/Pb Number of immersions: I Test conditions for lead-free containing solder alloy Temperature: 245 ±5 °C Dipping time: 3 ±0.3 seconds Depth of immersion: 10 mm Alloy Composition: SAC305 Number of immersions: I Electrical AEC-Q200 19 Δ C/C Parametrically test per lot and sample size Characterization requirements, summary to show Min, Max, Mean and Class I: Standard deviation at room as well as Min and Max NP0: ±30 ppm/°C operating temperatures. Class I: NP0: -55 °C to +125 °C Normal temperature: 20 °C **Board Flex** AEC-Q200 21 Part mounted on a 100 mm X 40 mm FR4 PCB board, No visible damage which is 1.6 ±0.2 mm thick and has a layer-thickness 35 $\mu m \pm 10 \mu m$. Δ C/C Part should be mounted using the following soldering Class I: reflow profile. NP0: Within $\pm 1\%$ or 0.5 pF, Conditions: whichever is greater Class I: Bending 3 mm at a rate of 1 mm/s, radius jig 340 mm Test Substrate:

า

	Dimension(mm)		
Туре	а	b	C
0201	0.3	0.9	0.3
0402	0.4	1.5	0.5
0603	1.0	3.0	1.2
0805	1.2	4.0	1.65
1206	2.2	5.0	1.65
1210	2.2	5.0	2.0
1808	3.5	7.0	3.7

YAGEO

Surface-Mount Ceramic Multilayer Capacitors

	High Frequency
l	Automotive grade

16 V to 50 V NP0

TEST	TEST METHOD		PROCEDURE	REQUIREMENTS
Terminal Strength	AEC-Q200	22	With the component mounted on a PCB obtained with the device to be tested, apply a 17.7N (1.8Kg) force to the side of a device being tested. This force shall be applied for 60+1 seconds. Also the force shall be applied gradually as not to apply a shock to the component being tested. * Apply 2N force for 0402 size.	Magnification of 20X or greater may be employed for inspection of the mechanical integrity of the device body, terminals and body/terminal junction. Before, during and after the test, the device shall comply with all electrical requirements stated in this specification.
Beam Load Test	AEC-Q200	23	Place the part in the beam load fixture. Apply a force until the part breaks or the minimum acceptable force level required in the user specification(s) is attained.	\leq 0805 Thickness $>$ 0.5mm: 20N Thickness \leq 0.5mm: 8N \geq 1206 Thickness \geq 1.25 mm: 54N Thickness $<$ 1.25 mm: 15N
Voltage Proof			1. Specified stress voltage applied for $1\sim5$ seconds 2. Ur ≤ 100 V: series applied 2.5 Ur 3. 100 V $<$ Ur ≤ 200 V series applied (1.5 Ur + 100) 4. 200 V $<$ Ur ≤ 500 V series applied (1.3 Ur + 100) 5. Ur > 500 V: 1.3 Ur 6. Ur ≥ 1000 V: 1.2 Ur Charge/Discharge current is less than 50 mA	No breakdown or flashover
ESR			Measuring frequency: ± 0.2GHz at room temperature.	$0.1 \text{pF} \le C \le 1 \text{pF} : 350 \text{m}\Omega \text{ / C max}$ $1 \text{pF} < C \le 5 \text{pF} : 300 \text{m}\Omega \text{ max}$ $5 \text{pF} < C \le 10 \text{pF} : 250 \text{m}\Omega \text{ max}$ $C : \text{Nominal cap (pF)}$
•			Measuring frequency: $500 \pm 50 \text{MHz}$ at room temperature.	10pF < C ≤ 100pF :400mΩ max

Product specification 14

Surface-Mount Ceramic Multilayer Capacitors | High Frequency Automotive grade | NP0 | 16 V to 50 V

REVISION HISTORY

REVISION	DATE	CHANGE NOTIFICATION	DESCRIPTION
Version I	Feb. 08, 2021	-	- Add 0402 / 0.1 pf~ 100pF
Version 0	Dec. 14, 2018	-	- New

16 V to 50 V

Surface-Mount Ceramic Multilayer Capacitors

High Frequency NP0 Automotive arade

LEGAL DISCLAIMER

Yageo, its distributors and agents (collectively, "Yageo"), hereby disclaims any and all liabilities for any errors, inaccuracies or incompleteness contained in any product related information, including but not limited to product specifications, datasheets, pictures and/or graphics. Yageo may make changes, modifications and/or improvements to product related information at any time and without notice.

Yageo makes no representation, warranty, and/or guarantee about the fitness of its products for any particular purpose or the continuing production of any of its products. To the maximum extent permitted by law, Yageo disclaims (i) any and all liability arising out of the application or use of any Yageo product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for a particular purpose, non-infringement and merchantability.

Yageo statements regarding the suitability of products for certain types of applications are based on Yageo's knowledge of typical operating conditions for such types of applications in a generic nature. Such statements are neither binding statements of Yageo nor intended to constitute any warranty concerning the suitability for a specific customer application or use. They are intended for use only by customers with requisite knowledge and experience for determining whether Yageo products are the correct products for their application or use. In addition, unpredicatable and isolated cases of product failure may still occur, therefore, customer application or use of Yageo products which requires higher degree of reliability or safety, shall employ additional protective safeguard measures to ensure that product failure would not result in personal injury or property damage.

Yageo products are not designed for application or use in medical, life-saving, or life-sustaining devices or for any other application or use in which the failure of Yageo products could result in personal injury or death. Customers using or selling Yageo products not expressly indicated for above-mentioned purposes shall do so at their own risk and agree to fully indemnify Yageo and hold Yageo harmless.

Information provided here is intended to indicate product specifications only. Yageo reserves all the rights for revising this content without further notification, as long as products are unchanged. Any product change will be announced by PCN.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Yageo:

```
        AQ0402BRNPO9BN1R0
        AQ0402BRNPO9BN1R2
        AQ0402BRNPO9BN1R5
        AQ0402BRNPO9BN1R5
        AQ0402BRNPO9BN1R8

        AQ0402BRNPO9BN2R2
        AQ0402BRNPO9BN2R7
        AQ0402BRNPO9BN3R3
        AQ0402BRNPO9BN3R9

        AQ0402BRNPO9BN4R7
        AQ0402BRNPO9BNR10
        AQ0402BRNPO9BNR20
        AQ0402BRNPO9BNR30

        AQ0402BRNPO9BNR40
        AQ0402BRNPO9BNR50
        AQ0402BRNPO9BNR60
        AQ0402BRNPO9BNR70

        AQ0402BRNPO9BNR80
        AQ0402BRNPO9BNR90
        AQ0402CRNPO9BN5R6
        AQ0402CRNPO9BN6R8

        AQ0402JRNPO9BN150
        AQ0402JRNPO9BN101
        AQ0402JRNPO9BN101
        AQ0402JRNPO9BN20

        AQ0402JRNPO9BN330
        AQ0402JRNPO9BN390
        AQ0402JRNPO9BN470
        AQ0402JRNPO9BN560

        AQ0402JRNPO9BN680
        AQ0402JRNPO9BN820
```